Author Affiliations
Abstract
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 School of Digital Media and Design Arts, Beijing University of Posts and Telecommunications, Beijing 100876, China
Transverse mode characteristics of a laser are related to a variety of interesting applications. An on-demand mode solid laser in the 1064 nm band was proposed previously. In this paper, we provide a fiber laser for on-demand modes in the 1550 nm band to prescribe the pure and high-quality emission of a higher-order transverse laser mode, based on a simple construction with one spatial light modulator (SLM) and a single-mode erbium-doped fiber (SM-EDF). The SLM is designated to generate the desired higher-order mode and separate the higher-order mode and the fundamental mode. The fundamental mode oscillates in the fiber ring laser, and therefore the SM-EDF can be pumped with a single-mode 980 nm laser, no matter what higher-order mode is prescribed. In this proof-of-principle experiment, high-quality higher-order modes are observed from LP01 to LP105. Stable emission and real-time switching between modes can be easily realized by altering the phase on the SLM. In addition, the propagation of the LP01, LP11, LP21, and LP02 modes from the fiber laser is also demonstrated in a four-mode few-mode fiber.
Lasers, erbium Laser beam shaping Phase modulation Spatial light modulators 
Photonics Research
2017, 5(3): 03000256
Author Affiliations
Abstract
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
In this paper, we present a mode-selective coupler based on a dual-core all-solid photonic bandgap fiber (AS-PBGF). Because they are all-solid, AS-PBGF-based mode converters are easier to splice to other fibers than those based on air-hole photonic crystal fibers. Mode conversions between the LP01 and LP11 modes, LP01 and LP21 modes, and LP01 and LP01 modes are obtained at the wavelength λ _ 1550 nm. The 3 dB wavelength bandwidth of these mode converters are 47.8, 20.3, and 20.3 nm, respectively.
Optical communications Optical communications Photonic crystal fibers Photonic crystal fibers 
Photonics Research
2015, 3(5): 05000220

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!